Category theory

Return to Category of sets, Set theory, Set (mathematics)

Snippet from Wikipedia: Category theory

Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in almost all areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality.

Many areas of computer science also rely on category theory, such as functional programming and semantics.

A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the source and the target of the morphism. Metaphorically, a morphism is an arrow that maps its source to its target. Morphisms can be composed if the target of the first morphism equals the source of the second one. Morphism composition has similar properties as function composition (associativity and existence of an identity morphism for each object). Morphisms are often some sort of functions, but this is not always the case. For example, a monoid may be viewed as a category with a single object, whose morphisms are the elements of the monoid.

The second fundamental concept of category theory is the concept of a functor, which plays the role of a morphism between two categories C 1 {\displaystyle {\mathcal {C}}_{1}} and C 2 {\displaystyle {\mathcal {C}}_{2}} : it maps objects of C 1 {\displaystyle {\mathcal {C}}_{1}} to objects of C 2 {\displaystyle {\mathcal {C}}_{2}} and morphisms of C 1 {\displaystyle {\mathcal {C}}_{1}} to morphisms of C 2 {\displaystyle {\mathcal {C}}_{2}} in such a way that sources are mapped to sources, and targets are mapped to targets (or, in the case of a contravariant functor, sources are mapped to targets and vice-versa). A third fundamental concept is a natural transformation that may be viewed as a morphism of functors.

Math: Outline of mathematics, Mathematics research, Mathematical anxiety, Pythagorean Theorem, Scientific Notation, Algebra (Pre-algebra, Elementary algebra, Abstract algebra, Linear algebra, Universal algebra), Arithmetic (Essence of arithmetic, Elementary arithmetic, Decimal arithmetic, Decimal point, numeral system, Place value, Face value), Applied mathematics, Binary operation, Classical mathematics, Control theory, Cryptography, Definitions of mathematics, Discrete mathematics (Outline of discrete mathematics, Combinatorics), Dynamical systems, Engineering mathematics, Financial mathematics, Fluid mechanics (Mathematical fluid dynamics), Foundations of mathematics, Fudge (Mathematical fudge, Renormalization), Game theory, Glossary of areas of mathematics, Graph theory, Graph operations, Information theory, Language of mathematics, Mathematical economics, Mathematical logic (Model theory, Proof theory, Set theory, Type theory, Recursion theory, Theory of Computation, List of logic symbols), Mathematical optimization, Mathematician, Modulo, Mathematical notation (List of logic symbols, Notation in probability and statistics, Physical constants, Mathematical alphanumeric symbols, ISO 31-11), Numerical analysis, Operations research, Philosophy of mathematics, Probability (Outline of probability), Statistics, Mathematical structure, Ternary operation, Unary operation, Variable (mathematics), Glossary, Bibliography (Math for Data Science and DataOps, Math for Machine Learning and MLOps, Math for Programmers and Software Engineering), Courses, Mathematics GitHub. (navbar_math - see also navbar_variables)


© 1994 - 2024 Cloud Monk Losang Jinpa or Fair Use. Disclaimers

SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.