Python callback - A subroutine function which is passed as an argument to be executed at some point in the future.
Python class - A template for creating user-defined objects. Class definitions normally contain method definitions which operate on instances of the class.
class variable
A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).
coercion
The implicit conversion of an instance of one type to another during an operation which involves two arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.
complex number
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.
context manager
An object which controls the environment seen in a with statement by defining __enter__() and __exit__() methods. See PEP 343.
context variable
A variable which can have different values depending on its context. This is similar to Thread-Local Storage in which each execution thread may have a different value for a variable. However, with context variables, there may be several contexts in one execution thread and the main usage for context variables is to keep track of variables in concurrent asynchronous tasks. See contextvars.
contiguous
A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first index varies the fastest.
coroutine
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented with the async def statement. See also PEP 492.
coroutine function
A function which returns a coroutine object. A coroutine function may be defined with the async def statement, and may contain await, async for, and async with keywords. These were introduced by PEP 492.
CPython
The canonical implementation of the Python programming language, as distributed on python.org. The term “CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.
decorator
A function returning another function, usually applied as a function transformation using the @wrapper syntax. Common examples for decorators are classmethod() and staticmethod().
The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:
def f(arg):
...
f = staticmethod(f)
@staticmethod
def f(arg):
...
The same concept exists for classes, but is less commonly used there. See the documentation for function definitions and class definitions for more about decorators.
descriptor
Any object which defines the methods __get__(), __set__(), or __delete__(). When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python because they are the basis for many features including functions, methods, properties, class methods, static methods, and reference to super classes.
For more information about descriptors’ methods, see Implementing Descriptors or the Descriptor How To Guide.
dictionary
An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__() and __eq__() methods. Called a hash in Perl.
dictionary comprehension
A compact way to process all or part of the elements in an iterable and return a dictionary with the results. results = {n: n ** 2 for n in range(10)} generates a dictionary containing key n mapped to value n ** 2. See Displays for lists, sets and dictionaries.
dictionary view
The objects returned from dict.keys(), dict.values(), and dict.items() are called dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these changes. To force the dictionary view to become a full list use list(dictview). See Dictionary view objects.
docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class, function or module. Since it is available via introspection, it is the canonical place for documentation of the object.
duck-typing
A programming style which does not look at an object’s type to determine if it has the right interface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr() tests or EAFP programming.
EAFP
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized by the presence of many try and except statements. The technique contrasts with the LBYL style common to many other languages such as C.
expression
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of expression elements like literals, names, attribute access, operators or function calls which all return a value. In contrast to many other languages, not all language constructs are expressions. There are also statements which cannot be used as expressions, such as while. Assignments are also statements, not expressions.
extension module
A module written in C or C++, using Python’s C API to interact with the core and with user code.
f-string
String literals prefixed with 'f' or 'F' are commonly called “f-strings” which is short for formatted string literals. See also PEP 498.
file object
An object exposing a file-oriented API (with methods such as read() or write()) to an underlying resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.). File objects are also called file-like objects or streams.
There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces are defined in the io module. The canonical way to create a file object is by using the open() function.
file-like object
A synonym for file object.
filesystem encoding and error handler
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to the operating system.
The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding fails to provide this guarantee, API functions can raise UnicodeError.
The sys.getfilesystemencoding() and sys.getfilesystemencodeerrors() functions can be used to get the filesystem encoding and error handler.
The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read() function: see filesystem_encoding and filesystem_errors members of PyConfig.
See also the locale encoding.
finder
An object that tries to find the loader for a module that is being imported.
Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path entry finders for use with sys.path_hooks.
See PEP 302, PEP 420 and PEP 451 for much more detail.
floor division
Mathematical division that rounds down to nearest integer. The floor division operator is //. For example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.
function
A series of statements which returns some value to a caller. It can also be passed zero or more arguments which may be used in the execution of the body. See also parameter, method, and the Function definitions section.
function annotation
An annotation of a function parameter or return value.
Function annotations are usually used for type hints: for example, this function is expected to take two int arguments and is also expected to have an int return value:
def sum_two_numbers(a: int, b: int) → int:
return a + b
Function annotation syntax is explained in section Function definitions.
See variable annotation and PEP 484, which describe this functionality. Also see Annotations Best Practices for best practices on working with annotations.
__future__
A future statement, from __future__ import <feature>, directs the compiler to compile the current module using syntax or semantics that will become standard in a future release of Python. The __future__ module documents the possible values of feature. By importing this module and evaluating its variables, you can see when a new feature was first added to the language and when it will (or did) become the default:
import __future__
__future__.division
_Feature1).
interpreted
Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because of the presence of the bytecode compiler. This means that source files can be run directly without explicitly creating an executable which is then run. Interpreted languages typically have a shorter development/debug cycle than compiled ones, though their programs generally also run more slowly. See also interactive.
interpreter shutdown
When asked to shut down, the Python interpreter enters a special phase where it gradually releases all allocated resources, such as modules and various critical internal structures. It also makes several calls to the garbage collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code executed during the shutdown phase can encounter various exceptions as the resources it relies on may not function anymore (common examples are library modules or the warnings machinery).
The main reason for interpreter shutdown is that the __main__ module or the script being run has finished executing.
iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you define with an __iter__() method or with a __getitem__() method that implements Sequence semantics.
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), …). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and generator.
iterator
An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing it to the built-in function next()) return successive items in the stream. When no more data are available a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls to its __next__() method just raise StopIteration again. Iterators are required to have an __iter__() method that returns the iterator object itself so every iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container object (such as a list) produces a fresh new iterator each time you pass it to the iter() function or use it in a for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.
More information can be found in Iterator Types.
CPython implementation detail: CPython does not consistently apply the requirement that an iterator define __iter__().
key function
A key function or collation function is a callable that returns a value used for sorting or ordering. For example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped. They include min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.nlargest(), and itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors: attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how to create and use key functions.
keyword argument
See argument.
lambda
An anonymous inline function consisting of a single expression which is evaluated when the function is called. The syntax to create a lambda function is lambda [parameters]: expression
LBYL
Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the looking” and “the leaping”. For example, the code, if key in mapping: return mapping[key] can fail if another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks or by using the EAFP approach.
locale encoding
On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.setlocale(locale.LC_CTYPE, new_locale).
On Windows, it is the ANSI code page (ex: cp1252).
locale.getpreferredencoding(False) can be used to get the locale encoding.
Python uses the filesystem encoding and error handler to convert between Unicode filenames and bytes filenames.
list
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since access to elements is O(1).
list comprehension
A compact way to process all or part of the elements in a sequence and return a list with the results. result = ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all elements in range(256) are processed.
loader
An object that loads a module. It must define a method named load_module(). A loader is typically returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.
magic method
An informal synonym for special method.
mapping
A container object that supports arbitrary key lookups and implements the methods specified in the Mapping or MutableMapping abstract base classes. Examples include dict, collections.defaultdict, collections.OrderedDict and collections.Counter.
meta path finder
A finder returned by a search of sys.meta_path. Meta path finders are related to, but different from path entry finders.
See importlib.abc.MetaPathFinder for the methods that meta path finders implement.
metaclass
The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The metaclass is responsible for taking those three arguments and creating the class. Most object oriented programming languages provide a default implementation. What makes Python special is that it is possible to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation, implementing singletons, and many other tasks.
More information can be found in Metaclasses.
method
A function which is defined inside a class body. If called as an attribute of an instance of that class, the method will get the instance object as its first argument (which is usually called self). See function and nested scope.
method resolution order
Method Resolution Order is the order in which base classes are searched for a member during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter since the 2.3 release.
module
An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary Python objects. Modules are loaded into Python by the process of importing.
See also package.
module spec
A namespace containing the import-related information used to load a module. An instance of importlib.machinery.ModuleSpec.
MRO
See method resolution order.
mutable
Mutable objects can change their value but keep their id(). See also immutable.
named tuple
The term “named tuple” applies to any type or class that inherits from tuple and whose indexable elements are also accessible using named attributes. The type or class may have other features as well.
Several built-in types are named tuples, including the values returned by time.localtime() and os.stat(). Another example is sys.float_info:
sys.float_info[1] # indexed access
1024
sys.float_info.max_exp # named field access
1024
isinstance(sys.float_info, tuple) # kind of tuple
True
Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written by hand or it can be created with the factory function collections.namedtuple(). The latter technique also adds some extra methods that may not be found in hand-written or built-in named tuples.
namespace
The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity by preventing naming conflicts. For instance, the functions builtins.open and os.open() are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear which module implements a function. For instance, writing random.seed() or itertools.islice() makes it clear that those functions are implemented by the random and itertools modules, respectively.
namespace package
A PEP 420 package which serves only as a container for subpackages. Namespace packages may have no physical representation, and specifically are not like a regular package because they have no __init__.py file.
See also module.
nested scope
The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another function can refer to variables in the outer function. Note that nested scopes by default work only for reference and not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and write to the global namespace. The nonlocal allows writing to outer scopes.
new-style class
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties, __getattribute__(), class methods, and static methods.
object
Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any new-style class.
package
A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python module with an __path__ attribute.
See also regular package and namespace package.
parameter
A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments) that the function can accept. There are five kinds of parameter:
positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument. This is the default kind of parameter, for example foo and bar in the following:
def func(foo, bar=None): …
positional-only: specifies an argument that can be supplied only by position. Positional-only parameters can be defined by including a / character in the parameter list of the function definition after them, for example posonly1 and posonly2 in the following:
def func(posonly1, posonly2, /, positional_or_keyword): …
keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be defined by including a single var-positional parameter or bare * in the parameter list of the function definition before them, for example kw_only1 and kw_only2 in the following:
def func(arg, *, kw_only1, kw_only2): …
var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any positional arguments already accepted by other parameters). Such a parameter can be defined by prepending the parameter name with *, for example args in the following:
def func(*args, **kwargs): …
var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any keyword arguments already accepted by other parameters). Such a parameter can be defined by prepending the parameter name with **, for example kwargs in the example above.
Parameters can specify both optional and required arguments, as well as default values for some optional arguments.
See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the inspect.Parameter class, the Function definitions section, and PEP 362.
path entry
A single location on the import path which the path based finder consults to find modules for importing.
path entry finder
A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to locate modules given a path entry.
See importlib.abc.PathEntryFinder for the methods that path entry finders implement.
path entry hook
A callable on the sys.path_hook list which returns a path entry finder if it knows how to find modules on a specific path entry.
path based finder
One of the default meta path finders which searches an import path for modules.
path-like object
An object representing a file system path. A path-like object is either a str or bytes object representing a path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively. Introduced by PEP 519.
PEP
Python Enhancement Proposal. A PEP is a design document providing information to the Python community, or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical specification and a rationale for proposed features.
PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible for building consensus within the community and documenting dissenting opinions.
See PEP 1.
portion
A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined in PEP 420.
positional argument
See argument.
provisional API
A provisional API is one which has been deliberately excluded from the standard library’s backwards compatibility guarantees. While major changes to such interfaces are not expected, as long as they are marked provisional, backwards incompatible changes (up to and including removal of the interface) may occur if deemed necessary by core developers. Such changes will not be made gratuitously – they will occur only if serious fundamental flaws are uncovered that were missed prior to the inclusion of the API.
Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every attempt will still be made to find a backwards compatible resolution to any identified problems.
This process allows the standard library to continue to evolve over time, without locking in problematic design errors for extended periods of time. See PEP 411 for more details.
provisional package
See provisional API.
Python 3000
Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in the distant future.) This is also abbreviated “Py3k”.
Pythonic
An idea or piece of code which closely follows the most common idioms of the Python language, rather than implementing code using concepts common to other languages. For example, a common idiom in Python is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:
for i in range(len(food)):
print(food[i])
As opposed to the cleaner, Pythonic method:
for piece in food:
print(piece)
qualified name
A dotted name showing the “path” from a module’s global scope to a class, function or method defined in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the object’s name:
… class D:
… def meth(self):
… pass
…
'C'
'C.D'
'C.D.meth'
When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any parent packages, e.g. email.mime.text:
import email.mime.text
email.mime.text.__name__
'email.mime.text'
reference count
The number of references to an object. When the reference count of an object drops to zero, it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython implementation. The sys module defines a getrefcount() function that programmers can call to return the reference count for a particular object.
regular package
A traditional package, such as a directory containing an __init__.py file.
See also namespace package.
__slots__
A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare cases where there are large numbers of instances in a memory-critical application.
sequence
An iterable which supports efficient element access using integer indices via the __getitem__() special method and defines a __len__() method that returns the length of the sequence. Some built-in sequence types are list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.
The collections.abc.Sequence abstract base class defines a much richer interface that goes beyond just __getitem__() and __len__(), adding count(), index(), __contains__(), and __reversed__(). Types that implement this expanded interface can be registered explicitly using register().
set comprehension
A compact way to process all or part of the elements in an iterable and return a set with the results. results = {c for c in 'abracadabra' if c not in 'abc'} generates the set of strings {'r', 'd'}. See Displays for lists, sets and dictionaries.
single dispatch
A form of generic function dispatch where the implementation is chosen based on the type of a single argument.
slice
An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript) notation uses slice objects internally.
special method
A method that is called implicitly by Python to execute a certain operation on a type, such as addition. Such methods have names starting and ending with double underscores. Special methods are documented in Special method names.
statement
A statement is part of a suite (a “block” of code). A statement is either an expression or one of several constructs with a keyword, such as if, while or for.
strong reference
In Python’s C API, a strong reference is a reference to an object which increments the object’s reference count when it is created and decrements the object’s reference count when it is deleted.
The Py_NewRef() function can be used to create a strong reference to an object. Usually, the Py_DECREF() function must be called on the strong reference before exiting the scope of the strong reference, to avoid leaking one reference.
See also borrowed reference.
text encoding
A codec which encodes Unicode strings to bytes.
text file
A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'), sys.stdin, sys.stdout, and instances of io.StringIO.
See also binary file for a file object able to read and write bytes-like objects.
triple-quoted string
A string which is bound by three instances of either a quotation mark (“) or an apostrophe (‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple lines without the use of the continuation character, making them especially useful when writing docstrings.
type
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is accessible as its __class__ attribute or can be retrieved with type(obj).
type alias
A synonym for a type, created by assigning the type to an identifier.
Type aliases are useful for simplifying type hints. For example:
def remove_gray_shades(
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:
pass
could be made more readable like this:
Color = tuple[int, int, int]
def remove_gray_shades(colors: list[Color]) → list[Color]:
pass
See typing and PEP 484, which describe this functionality.
type hint
An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return value.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs with code completion and refactoring.
Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using typing.get_type_hints().
See typing and PEP 484, which describe this functionality.
universal newlines
A manner of interpreting text streams in which all of the following are recognized as ending a line: the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\r'. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.
variable annotation
An annotation of a variable or a class attribute.
When annotating a variable or a class attribute, assignment is optional:
class C:
field: 'annotation'
Variable annotations are usually used for type hints: for example this variable is expected to take int values:
count: int = 0
Variable annotation syntax is explained in section Annotated assignment statements.
See function annotation, PEP 484 and PEP 526, which describe this functionality. Also see Annotations Best Practices for best practices on working with annotations.
virtual environment
A cooperatively isolated runtime environment that allows Python users and applications to install and upgrade Python distribution packages without interfering with the behaviour of other Python applications running on the same system.
See also venv.
virtual machine
A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by the bytecode compiler.
Zen of Python
Listing of Python design principles and philosophies that are helpful in understanding and using the language. The listing can be found by typing “import this” at the interactive prompt.
© Copyright 2001-2022, Python Software Foundation.
This page is licensed under the Python Software Foundation License Version 2.
Examples, recipes, and other code in the documentation are additionally licensed under the Zero Clause BSD License.
See History and License for more information.
The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Mar 21, 2022.
Created using Sphinx 3.2.1.
SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.