Table of Contents

Logical

Return to Logic, Essential Mathematics, Math, Data Science, Math for Data Science and DataOps, Math for Machine Learning and MLOps, Math for Programmers and Software Engineering, Outline of Mathematics, Outline of Discrete Mathematics, Outline of Probability, Math Bibliography

(BsTcMth 2017) (EsMthDS 2022) (MthPrg 2021)

Snippet from Wikipedia: Logic

Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics.

Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to work". Premises and conclusions express propositions or claims that can be true or false. An important feature of propositions is their internal structure. For example, complex propositions are made up of simpler propositions linked by logical vocabulary like {\displaystyle \land } (and) or {\displaystyle \to } (if...then). Simple propositions also have parts, like "Sunday" or "work" in the example. The truth of a proposition usually depends on the meanings of all of its parts. However, this is not the case for logically true propositions. They are true only because of their logical structure independent of the specific meanings of the individual parts.

Arguments can be either correct or incorrect. An argument is correct if its premises support its conclusion. Deductive arguments have the strongest form of support: if their premises are true then their conclusion must also be true. This is not the case for ampliative arguments, which arrive at genuinely new information not found in the premises. Many arguments in everyday discourse and the sciences are ampliative arguments. They are divided into inductive and abductive arguments. Inductive arguments are statistical generalizations, such as inferring that all ravens are black based on many individual observations of black ravens. Abductive arguments are inferences to the best explanation, for example, when a doctor concludes that a patient has a certain disease which explains the symptoms they suffer. Arguments that fall short of the standards of correct reasoning often embody fallacies. Systems of logic are theoretical frameworks for assessing the correctness of arguments.

Logic has been studied since antiquity. Early approaches include Aristotelian logic, Stoic logic, Nyaya, and Mohism. Aristotelian logic focuses on reasoning in the form of syllogisms. It was considered the main system of logic in the Western world until it was replaced by modern formal logic, which has its roots in the work of late 19th-century mathematicians such as Gottlob Frege. Today, the most commonly used system is classical logic. It consists of propositional logic and first-order logic. Propositional logic only considers logical relations between full propositions. First-order logic also takes the internal parts of propositions into account, like predicates and quantifiers. Extended logics accept the basic intuitions behind classical logic and apply it to other fields, such as metaphysics, ethics, and epistemology. Deviant logics, on the other hand, reject certain classical intuitions and provide alternative explanations of the basic laws of logic.

Research It More

Research:

Fair Use Sources

Fair Use Sources:

Math: Outline of mathematics, Mathematics research, Mathematical anxiety, Pythagorean Theorem, Scientific Notation, Algebra (Pre-algebra, Elementary algebra, Abstract algebra, Linear algebra, Universal algebra), Arithmetic (Essence of arithmetic, Elementary arithmetic, Decimal arithmetic, Decimal point, numeral system, Place value, Face value), Applied mathematics, Binary operation, Classical mathematics, Control theory, Cryptography, Definitions of mathematics, Discrete mathematics (Outline of discrete mathematics, Combinatorics), Dynamical systems, Engineering mathematics, Financial mathematics, Fluid mechanics (Mathematical fluid dynamics), Foundations of mathematics, Fudge (Mathematical fudge, Renormalization), Game theory, Glossary of areas of mathematics, Graph theory, Graph operations, Information theory, Language of mathematics, Mathematical economics, Mathematical logic (Model theory, Proof theory, Set theory, Type theory, Recursion theory, Theory of Computation, List of logic symbols), Mathematical optimization, Mathematician, Modulo, Mathematical notation (List of logic symbols, Notation in probability and statistics, Physical constants, Mathematical alphanumeric symbols, ISO 31-11), Numerical analysis, Operations research, Philosophy of mathematics, Probability (Outline of probability), Statistics, Mathematical structure, Ternary operation, Unary operation, Variable (mathematics), Glossary, Bibliography (Math for Data Science and DataOps, Math for Machine Learning and MLOps, Math for Programmers and Software Engineering), Courses, Mathematics GitHub. (navbar_math - see also navbar_variables)


© 1994 - 2024 Cloud Monk Losang Jinpa or Fair Use. Disclaimers

SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.