Return to Cloud databases or Database topics
Short description: Relational database management with a desired scalable performance of NoSQL, by combining OLTP plus ACID schemes
NewSQL is a class of relational database management systems that seek to provide the scalability of NoSQL systems for online transaction processing (OLTP) workloads while maintaining the ACID guarantees of a traditional database system.1)2) </ref><ref>
</ref><ref name=“highscalability”>
</ref>
Many enterprise systems that handle high-profile data (e.g., financial and order processing systems) are too large for conventional relational databases, but have transactional and consistency requirements that are not practical for NoSQL systems.<ref name=“aslett2010”>
</ref><ref>
</ref> The only options previously available for these organizations were to either purchase more powerful computers or to develop custom middleware that distributes requests over conventional DBMS. Both approaches feature high infrastructure costs and/or development costs. NewSQL systems attempt to reconcile the conflicts.
The term was first used by 451 Group analyst Matthew Aslett in a 2011 research paper discussing the rise of a new generation of database management systems.<ref name=“aslett2010” /> One of the first NewSQL systems was the H-Store parallel database system.<ref>
</ref><ref>
</ref>
Typical applications are characterized by heavy OLTP transaction volumes. OLTP transactions;
</ref>
However, some support hybrid transactional/analytical processing (HTAP) applications. Such systems improve performance and scalability by omitting heavyweight recovery or concurrency control.<ref>
</ref>
The two common distinguishing features of NewSQL database solutions are that they support online scalability of NoSQL databases and the relational data model (including ACID consistency) using SQL as their primary interface.<ref>
</ref>
NewSQL systems can be loosely grouped into three categories:<ref name=“sigmodrecord” /><ref>
</ref>
NewSQL systems adopt various internal architectures. Some systems employ a cluster of shared-nothing nodes, in which each node manages a subset of the data. They include components such as distributed concurrency control, flow control, and distributed query processing.
The second category are optimized storage engines for SQL. These systems provide the same programming interface as SQL, but scale better than built-in engines.
These systems automatically split databases across multiple nodes using Raft or Paxos consensus algorithm.